Towards Embodied Collective Intelligence in Real Physical World.

CoPerception in 2022-2023

Introduction

- Autonomous system including robots, autonomous driving, humanoid, drones..... have been promoted rapidly thanks to the development of deep learning, sensors and semi-conductor technologies.
- In some areas, multi-robots system can collaborate to achieve a better performance. For example, for perception tasks, a cluster of robots can get a more comprehensive observation since they have different angle of view.
- Our research mainly focus on how to design the robust collaborative perception system.

Single-agent perception

Collaborative perception

Communication Efficiency: DiscoNet(NeurIPS2021), Where2comm (NeurIPS2022)

Communication Latency and Interruption SyncNet (ECCV2022), CoBEVFlow (NeurIPS2023, under review)

Robust CoPerception

Spatial-Temporal Alignment CoAlign (ICRA2023),, FreeAlign (ICRA2024, under review),

Perception heterogeneous CoHeterogeneous

Security Among Us

Introduction

For collaborative perception in V2V, V2X, or UAV scenarios, there are three critical issues:

- 1. Communication efficient: Bandwidth consumption
- 2. Communication robust: Latency and Interruption
- 3. Spatial-temporal alignment: Localization error, time-domain asynchronization

Where2comm: Efficient Collaborative Perception via Spatial Confidence Maps

Motivation: Trade-off between perception performance and communication bandwidth.

perception performance

communication bandwidth

Where2comm: Efficient Collaborative Perception via Spatial Confidence Maps

Motivation: Trade-off between perception performance and communication bandwidth.

Learning Distilled Collaboration Graph for Multi-Agent Perception

Motivation: Intermediate fusion/teacher-student framework

Learning Distilled Collaboration Graph for Multi-Agent Perception

System Overview

Learning Distilled Collaboration Graph for Multi-Agent Perception

Experiments: Communication Efficiency

Where2comm: Efficient Collaborative Perception via Spatial Confidence Maps

Motivation: Trade-off between perception performance and communication bandwidth.

Messages should be spatially sparse, yet perceptually critical.

Where2comm: Efficient Collaborative Perception via Spatial Confidence Maps

Core idea: Exploring spatial heterogeneity of perceptual information.

spatial confidence map

- Collaborative perception could contribute to safety-critical scenarios.
- The collision could be avoided when the blue car can share a message about the red car.

Where2comm: Efficient Collaborative Perception via Spatial Confidence Maps

Architecture: what, who and how.

- Generator produces a **spatial confidence map (SCM)** to indicate perceptually critical areas.
- Communication module leverages the SCM to decide where and who to communicate.
- Fusion module leverages the SCM as a prior to fuse all the messages via **multi-head attention**.

Where2comm: Efficient Collaborative Perception via Spatial Confidence Maps

Datasets

Dataset	CoPerception-UAVs (NEW)	OPV2V [1]	V2X-Sim ^[2]	DAIR-V2X ^[3]
Modality	Camera-only	Camera-only	Lidar	Lidar
View	Aerial	Front (car)	Front (car)	Front (car)
Data	Simulation	Simulation	Simulation	Real

CoPerception-UAVs Dataset

(b) Different views from 4 UAVs

[1] Xu, Runsheng et al. "OPV2V: An Open Benchmark Dataset and Fusion Pipeline for Perception with Vehicle-to-Vehicle Communication." (ICRA) (2022): 2583-2589.

[2] Li, Yiming et al. "V2X-Sim: Multi-Agent Collaborative Perception Dataset and Benchmark for Autonomous Driving." RAL (2022): 10914-10921.

[3] Yu, Haibao et al. "DAIR-V2X: A Large-Scale Dataset for Vehicle-Infrastructure Cooperative 3D Object Detection." CVPR (2022)

Where2comm: Efficient Collaborative Perception via Spatial Confidence Maps

Architecture: what, who and how.

- Where2comm outperforms previous SOTA by 11.92%
- Where2comm adapts to various bandwidths while previous models only handle one predefined bandwidth

Request map

Where2comm: Efficient Collaborative Perception via Spatial Confidence Maps

Qualitative evaluation

Sparse feature map

Attention weight

Detections with collaboration

Warped image of drone 2

Communication Robust

Latency-aware collaborative perception

Motivation: A collision caused by latency.

- Latency is ubiquitous in all kinds of communication systems.
- Latency compensation is essential for collaborative systems.

Communication Robust

Latency-aware collaborative perception

Compensation module: Knowledge distillation, multi-layer feature supervision.

$$\mathcal{L} = \lambda_o \ell_{\text{output}} \left(\mathbf{Y}_i^{(t)}, \widetilde{\mathbf{Y}}_i^{(t)} \right) + \lambda_f \ell_{\text{fusion}} \left(\mathbf{H}_i^{(t)}, \widetilde{\mathbf{H}}_i^{(t)} \right) + \lambda_f \ell_{\text{feature}} \left(\mathbf{F}_i^{(t)}, \widetilde{\mathbf{F}}_i^{(t)} \right) + \lambda_w \ell_{\text{weight}} \left(\mathbf{W}_{j \to i}^{(t)}, \widetilde{\mathbf{W}}_{j \to i}^{(t)} \right)$$

Communication Robust

Latency-aware collaborative perception

System overview: Keep sequential collaborative feature in memory leverage a compensation module.

Robust Collaborative 3D Object Detection in Presence of Pose Errors

Motivation: Accurate localization and synchronized clock is not always achievable

- Optimize the localization according to the correspondence of the bounding boxes
- Dealing with small noise (Require intersection between two corresponding boxes)

Robust Collaborative 3D Object Detection in Presence of Pose Errors

System Overview

Robust Collaborative 3D Object Detection in Presence of Pose Errors

Technique: Agent-object pose graph

• Agent-object pose graph illustration.

Robust Collaborative 3D Object Detection in Presence of Pose Errors

Experiment Results

Dataset		OPV2V					V2X-Sim 2.0			DAIR-V2X			
Method/Metric							AP@	0.5 ↑					
Noise Level $\sigma_t / \sigma_r(m/^\circ)$		0.0/0.0	0.2/0.2	0.4/0.4	0.6/0.6	0.0/0.0	0.2/0.2	0.4/0.4	0.6/0.6	0.0/0.0	0.2/0.2	0.4/0.4	0.6/0.6
w/o robust design	F-Cooper [8]	0.834	0.788	0.681	0.604	0.679	0.634	0.568	0.516	0.734	0.723	0.705	0.692
	V2VNet [9]	0.935	0.922	0.884	0.841	0.851	0.839	0.796	0.742	0.664	0.649	0.623	0.599
	DiscoNet [10]	0.916	0.906	0.884	0.862	0.785	0.775	0.748	0.708	0.736	0.726	0.708	0.697
	OPV2V _{pointpillar} [5]	0.943	0.933	0.915	0.899	0.824	0.807	0.782	0.757	0.733	0.723	0.708	0.697
	MASH [15]	0.602	0.602	0.602	0.602	0.643	0.643	0.643	0.643	0.400	0.400	0.400	0.400
w/	FPV-RCNN [18]	0.858	0.817	0.591	0.419	0.870	0.835	0.654	0.480	0.655	0.631	0.580	0.581
robust	V2VNet _{robust} [17]	0.942	0.938	0.929	0.918	0.840	0.836	0.811	0.778	0.660	0.655	0.646	0.636
design	V2X-ViT [16]	0.946	0.942	0.931	0.914	0.881	0.858	0.808	0.759	0.704	0.700	0.689	0.678
	Ours	0.966	0.962	0.958	0.945	0.858	0.852	0.822	0.796	0.746	0.738	0.720	0.700
Method/Metric		AP@0.7 ↑											
Noise Level $\sigma_t/\sigma_r(m/^\circ)$		0.0/0.0	0.2/0.2	0.4/0.4	0.6/0.6	0.0/0.0	0.2/0.2	0.4/0.4	0.6/0.6	0.0/0.0	0.2/0.2	0.4/0.4	0.6/0.6
w/o robust design	F-Cooper [8]	0.602	0.504	0.412	0.376	0.489	0.434	0.379	0.362	0.559	0.552	0.542	0.538
	V2VNet [9]	0.740	0.686	0.586	0.504	0.769	0.726	0.673	0.634	0.402	0.388	0.367	0.350
	DiscoNet [10]	0.791	0.766	0.746	0.733	0.680	0.642	0.616	0.589	0.583	0.576	0.569	0.566
	OPV2V _{pointpillar} [5]	0.827	0.804	0.780	0.765	0.672	0.651	0.632	0.625	0.553	0.547	0.540	0.538
	MASH [15]	0.198	0.198	0.198	0.198	0.384	0.384	0.384	0.384	0.244	0.244	0.244	0.244
w/	FPV-RCNN [18]	0.840	0.568	0.278	0.200	0.838	0.617	0.352	0.282	0.505	0.459	0.420	0.410
robust design	V2VNet _{robust} [17]	0.854	0.848	0.837	0.826	0.754	0.743	0.711	0.676	0.486	0.483	0.478	0.475
	V2X-ViT [16]	0.856	0.851	0.841	0.823	0.726	0.708	0.673	0.645	0.531	0.529	0.525	0.522
	Ours	0.912	0.900	0.889	0.868	0.765	0.742	0.711	0.684	0.604	0.588	0.579	0.570

Robust Collaborative 3D Object Detection in Presence of Pose Errors

Experiment Results

V2VNet(robust)

Ours

constant foreign and	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Modules		AP@0.7 ↑				
Collab- oration	Agent-Object Pose Graph	Uncertainty	Intermediate Fusion	0.0/0.0	0.2/0.2	0.4/0.4	0.6/0.6	
				0.703	0.703	0.703	0.703	
		\checkmark		0.730	0.730	0.730	0.730	
\checkmark			/	0.907	0.490	0.275	0.239	
\checkmark	\checkmark		/	0.899	0.814	0.751	0.657	
\checkmark	\checkmark	\checkmark	/	0.903	0.818	0.758	0.672	
\checkmark			Single-scale	0.824	0.789	0.766	0.757	
\checkmark			Multi-scale	0.914	0.860	0.799	0.768	
\checkmark	\checkmark		Multi-scale	0.910	0.897	0.886	0.865	
\checkmark	\checkmark	\checkmark	Multi-scale	0.912	0.900	0.889	0.868	

TABLE III: Ablation studies on OPV2V dataset. All technique modules benefit 3D collaborative object detection. In Intermediate Fusion column, / is late fusion.

Lab and Scholars

UCLA Mobility Lab (<u>https://mobility-lab.seas.ucla.edu</u>), Prof. Jiaqi Ma *Runsheng Xu*

SJTU CMIC (<u>https://siheng-chen.github.io</u>). Prof. Siheng Chen Yue Hu

NYU AI4CE Lab (https://ai4ce.github.io) , Prof. Chen Feng Yiming Li